

MERI College of Engineering and Technology (MERI - CET)

Lesson Plan

Name of the Faculty : Mr. Pardeep

Discipline : Mechanical Engineering

Semester : 7^t

Subject : Power Plant Engineering (ME- 407-F)
Lesson Plan Duration : 15 Weeks (from Aug., 2020 to Nov., 2020)

** Work Load (Lecture) per week (in hours): Lectures-02, Practicals-00

Week		Theory	Practical		
	Lecture	Topic	Practical	Topic	
	Day	(including assignment/test)	day		
1 st	1 st	Introduction: Energy resources and their availability		No Practicals	
	2 nd	types of power plants, selection of the plants,			
2 nd	3 rd	review of basic thermodynamic cycles used in power plants			
	4 th	Hydro Electric Power Plants: Rainfall and run-off measurements			
3 rd	5 th	plotting of various curves for estimating stream flow and size of reservoir			

MERI College of Engineering and Technology (MERI - CET)

	6 th	power plants design, construction and operation of different components of hydro-electric power plants	
4 th	7 th	site selection, comparison with other types of power plants	
	8 th	super critical pressure steam stations, site selection, coal storage, preparation, coal handling systems,	
5 th	9 th	feeding and burning of pulverized fuel, ash handling systems, dust collection-mechanical dust collector and electrostatic precipitator	
	10 th	Combined Cycles: Constant pressure gas turbine power plants,	
6 th	11 th	Arrangements of combined plants (steam & gas turbine power plants),	
	12 th	re-powering systems with gas production from coal, using PFBC systems, with organic fluids,	
7 th	13 th	parameters affecting thermodynamic efficiency of combined cycles. Problems	
	14 th	Nuclear Power Plants: Principles of nuclear energy, basic nuclear reactions	

MERI College of Engineering and Technology (MERI - CET)

8 th	15 th	nuclear reactors-PWR, BWR, CANDU	
	16 th	Sodium graphite, fast breeder, homogeneous; gas cooled	
9 th	17 th	Advantages and limitations, nuclear power station, waste disposal.	
	18 th	tariffs methods of electrical energy	
10 th	19 th	performance & operating characteristics of power plants-incremental rate theory	
	20 th	Input output curves, efficiency, heat rate, economic load sharing, Problems.	
11 th	21 th	Non-Conventional Power Generation: Solar radiation estimation	
	22 nd	solar energy collectors, low, medium & high temperature power plants	
12 th	23 nd	OTEC, wind power plants, tidal power plants, geothermal power plants	
	24 nd	Direct Energy Conversion Systems: Fuel cell,	
13 th	25 nd	MHD power generation-principle, open & closed cycles systems	
	26 nd	Thermoelectric power generation, thermionic power generation	
14 th	27 nd 28 nd	Revision Revision	
15 th	29 nd 30 nd	Revision Revision	